

AMERICAS

Best Practices for Heat Exchanger Cleaning Leak Detection

Evan Lyle, Vice President Projectile Tube Cleaning Inc.

Inspectioneering Sponsored by:

Importance of Cleaning Heat Exchangers

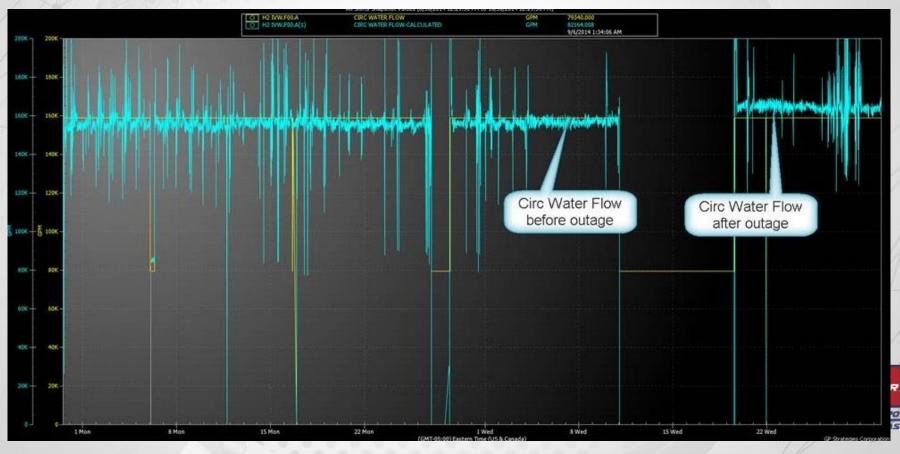
- Efficiency-heat transfer
- Equipment reliability
- Longevity of equipment

Performance Metrics to Consider

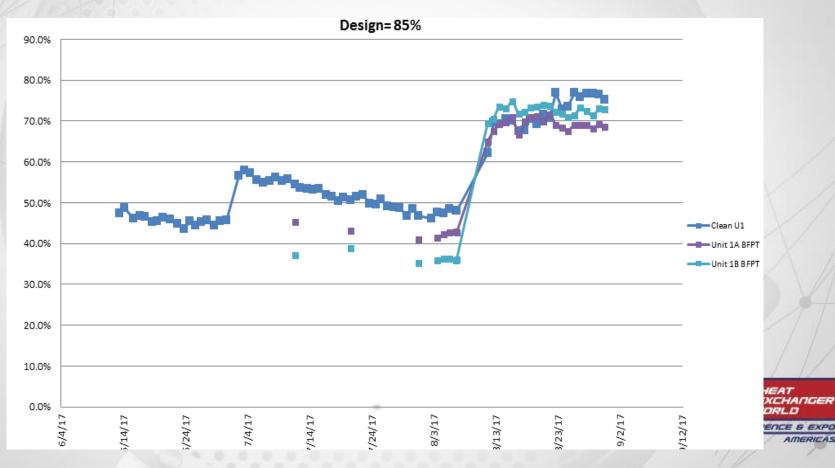
Temperature Changes (Delta T)

- Measurement of cooling water temperature before passing through heat exchanger and after passing through heat exchanger
- A larger change in temperature between inlet and outlet means a cleaner heat exchanger

Flow Rates


- Deposit in the tubes decreases the tube diameter
- Reduces the flow across the unit
- Cleaning heat exchanger increases flow rates

Cleanliness Factor


- Calculated by measuring a heat exchanger's current heat transfer coefficient as a percentage of the system's design specification.
- The higher the percentage, the better the unit is operating

Flow Rates Before and After

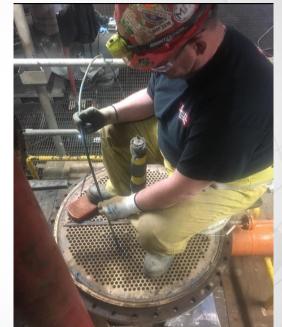
Cleanliness Factor Before and After

Methods for Cleaning Heat Exchangers: Mechanical Tube Cleaning

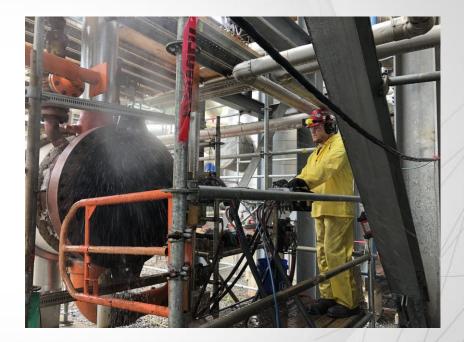
- Utilizes specialized Mechanical devices called Projectiles to scrape deposit from tube walls
- Uses low pressure (350 psi) high volume (35 GPM) water to propel the Projectiles through the tubes, similar to pipeline pigging
- Various types of Projectiles based on the application:
 - Metal-Hard deposits
 - Nylon Brush- Soft deposits
 - U-tube Projectiles- for U-tube heat exchangers
- Pros:
 - Fast: can clean around 500 tubes per hour
 - Safe: no safety risks inherent with the process
 - Good quality of cleaning
 - Relatively low-cost method
- Cons:
 - Unable to be used on tubes that are severely fouled

Deposit Type and Projectile Selection

- Which Projectile Type should I choose?
- The projectile to use depends on the type of deposit in the tubes
- Soft Deposits
 - Scrubber
 - Nylon Brush
- Medium Deposits
 - Plastic Projectile
- Hard Deposits
 - Metal Projectiles
 - Stainless Steel Brush (Rifled Tubes)



Methods for Cleaning Heat Exchangers: Rotary Tube Cleaning


- Uses a spinning lance with a brush or bit on the end. Utilizes water flush
- PROS:
 - Perfect for small tube bundles
 - Equipment is relatively low cost
 - Good starter set of equipment
- CONS:
 - Time consuming (less than 50 tubes per hour)
 - Cleaning effectiveness is below average

Methods for Cleaning Heat Exchangers: High Pressure Water Blasting


- Water is mechanism removing the deposits
- Uses pressures as high as 40,000 psi
- Lances are pushed down each tube with spraying tips
 - Semi-automated systems are being used, but many people still push the lance by hand
- Pros:
 - Good quality of cleaning: the process can remove deposits that mechanical cleaning may not be able to
- Cons:
 - Relatively slower than mechanical and chemical cleaning
 - Expensive
 - Higher safety risk factor due to high pressure-specifically true with hand lancing

Methods for Cleaning Heat Exchangers: Chemical Cleaning

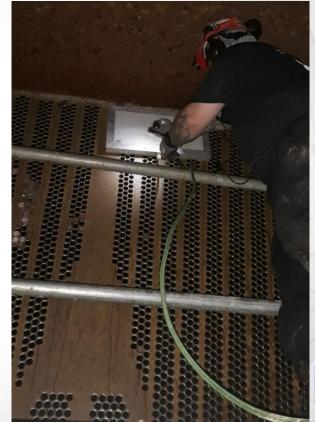
- Mainly uses inhibited acids to remove mineral scaling that are called descalers
- Uses a water to de-scaler mixture: usually 15-50% de-scaler
- Most common scale to be removed is calcium-based compounds
- PROS:
 - Relatively quick process
 - Able to fully remove deposits and restore tubes to base metal
- CONS:
 - Expensive
 - Only works on certain deposit types
 - More planning and logistical work from the plant involved than other methods

Plate and Frame Cleaning

- Two Cleaning Methods:
 - Circulate Chemicals
 - Pros
 - No need to disassemble
 - Lower Cost option
 - Cons
 - May not remove all deposition
 - Disassemble and clean with high pressure or individual dipping
 - Pros
 - More thorough cleaning method
 - Cons
 - Need to take apart unit
 - More expensive and time consuming

Leak Detection Methods (Shell and tube)

- Helium Leak Detection
- Pressure/Vacuum Testing
- Shell side fill
- Plugging Tubes


Helium Leak Detection

Pros:

- Quick and Efficient
- Most sensitive test: can find the smallest leaks
- Good for finding tube to tube sheet leaks

Cons:

- Need an experienced contractor (technician)
- Need shell side on
- Two Types of Tests:
 - Pressurize with helium
 - Vacuum test with helium

HEAT EXCHANGER WORLD DIFERENCE & EXPO

Pressure/Vacuum Testing

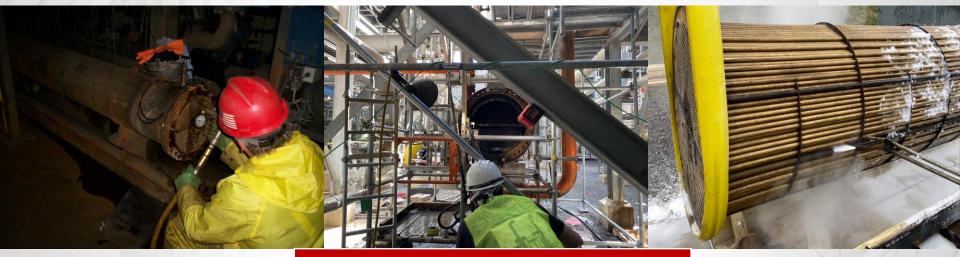
- Specialized guns to either pressurize with air or pull vacuum
- Test each tube individually
- Pro:
 - Sometimes the only method available
 - Quick and easy if there are not a lot of tubes
- Cons:
 - Takes a long time (10 seconds per tube)
 - Potential for operator or equipment error
 - Does not test where the nozzle seals

Shell Side Fill

- Fill shell side and watch tubes for leakage
- Dye to find smaller leaks
- Pros:
 - Quick, easy, low cost
 - Can find tube to tube sheet leakage
- Cons:
 - Not good for small leaks
 - Need the shell installed

Plug Types

- Machined Pound in Plugs
 - Pin
 - Pin and Collar
- Expandable Rubber Plugs
- High Pressure Plugs
 - Explosive Plugs
 - Pop-A-Plugs
 - High pressure mechanical Plugs



Questions?

Projectile Tube Cleaning Projectiletube.com 724-763-7633 info@projectiletube.com evan@projectiletube.com

