

Cost Reduction Opportunities for Industrial Applications through Innovative Heat Exchanger Designs using Enhanced Heat Transfer Surfaces

Vijay Chakravarthy, President (Sales & Marketing) Americas Prabhu Bala, Director-Technical Narayanan S, General Manager (Marketing)

Precision Equipments (Chennai) Private Limited, India | www.pecpl.com | mktg@pecpl.com

Inspectioneering Spo

Sponsored by: 🍥

The Power of Enhanced Surfaces

- Low temperature approaches and energy savings
- Capital savings and/or improved performance
- Significant size reduction smaller foot-print similar to compact Heat Exchangers
- Reduction in CO2 emissions an indirect benefit
- De-bottlenecking from process-constraints or capacity improvements in operating plants
- Available for both single-phase and two-phase applications
- Retains Shell-&-Tube configuration
- Modifies Heat Transfer mechanism and therefore different from extended surfaces

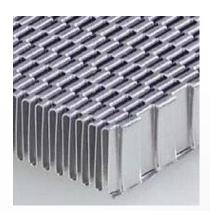
Typical Enhanced Surfaces – Single Phase

Based on the following principal mechanisms:

Decreasing the Thermal Boundary Layer

Twisted tape inserts

Spirally fluted



Ribbed tubes

Active mechanisms such as vibration, electric fields etc.,.

Increasing Flow Interruptions and Mixing

Off-set strip fins

Louvered fins

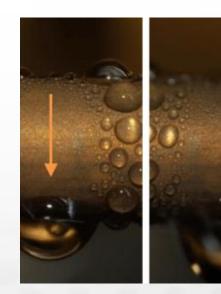
Typical Enhanced Surfaces – Two Phase

Based on the following principal mechanisms:

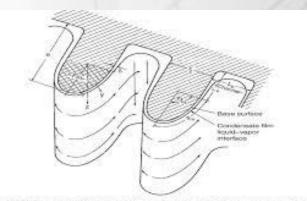
Boiling

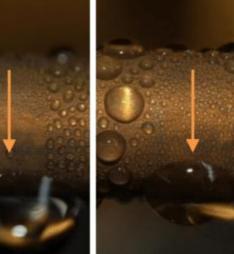
- Providing re-entrant cavities that trap vapor and promote nucleate boiling
- Lower the temperature difference for incipience of boiling by controlling the shape and size of cavities

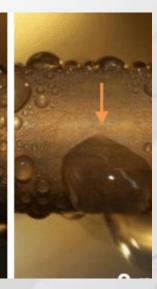
Evaporation and Boiling


- Treated surfaces such as porous boiling surfaces
- Structured boiling surfaces
- Active mechanisms

Condensation


- Active mechanisms


Condensation


- Use surface profiles to assist condensate draining through surface tension
- Use of Hydro-phobic surfaces that promote droplet formation

• Fluted Surfaces - Surface tension • Coatings – hydro-phobic surfaces • Condensate layer Interruptions

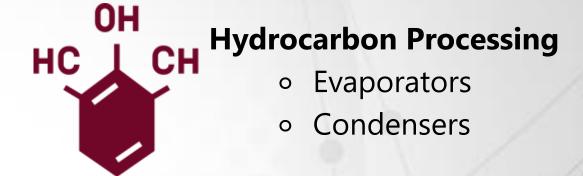
Common Applications of Enhanced Surfaces

HVAC & Refrigeration using doubly enhanced tubes

- Evaporators
- Condensers

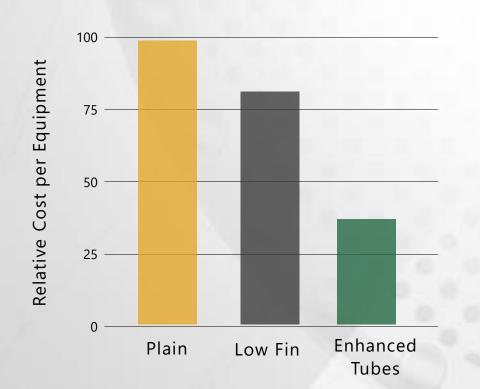
Air Separation Plants

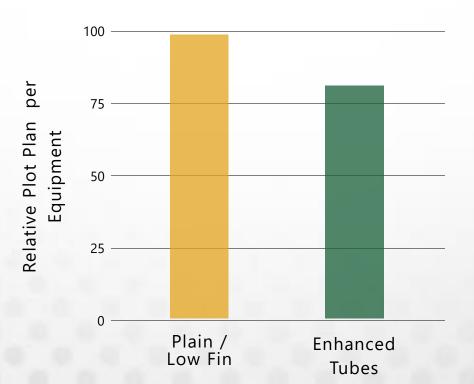
- Evaporators
- Condensers



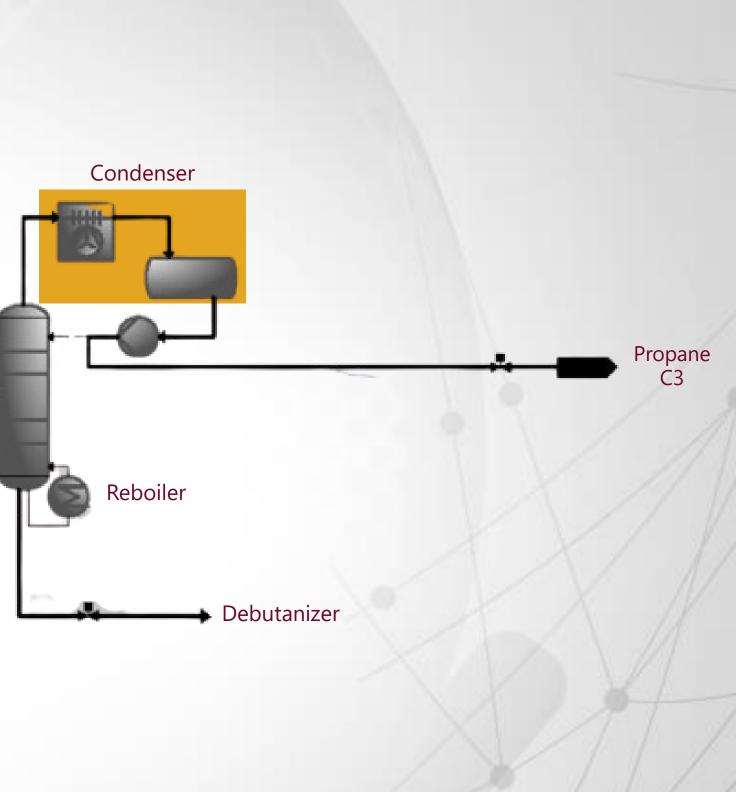
Power Plants • Condensers

Are enhanced surfaces suitable for applications involving fouling ?




Machinery Equipment

Case Study – Depropanizer Condensers


- A depropanizer is a distillation column that is used to separate propane from a mixture containing heavier hydrocarbon components such as butane and other heavier components.
- The separated propane overhead vapor from the distillation column – is condensed in the overhead condensers
- This case study concerns the optimization of the condenser heat exchanger using enhanced heat transfer tubes

NGL

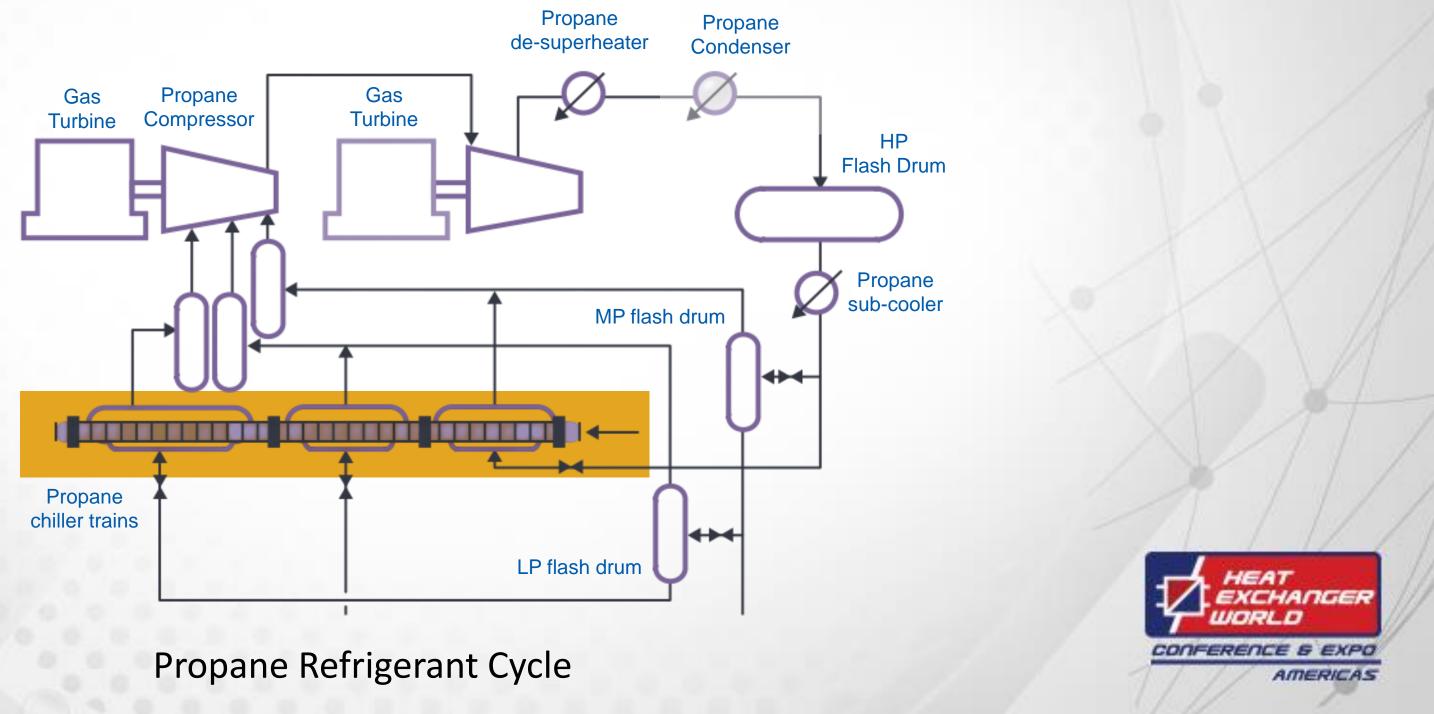
C3+

Case Study – Propane Pre-coolers in LNG Processes

Fipeline Bipeline

Regasification & Delivery

LNG final cost per gal (delivered as gas) Liquefaction Cost is directly related to refrigeration power and Heat Exchangers used have a direct influence on the refrigeration power


Total Cost

per MM Btu (from 12 gal of LNG)

Case Study – Propane Pre-Coolers in LNG Processes

- LNG process and the Propane fore-cooler cycle
- Reducing approach temperatures in the chilling train heat exchangers reduces overall refrigeration power

Case Study - Cost savings

SI No	Description	Existing Configuration - Plain tubes
1	Size of the Exchanger 1	1423mm ID x 6096mm Tube Length
2	Qty of Tubes 1	2834 Nos (Plain Tubes)
3	Heat Duty	18,805,612 Watts
4	Required Exchangers	2 Nos in Parallel
5	Pump capacity	More
6	Space requirements	More
7	CAPEX	100% of cost
8	OPEX 🚽	100% of cost
9	Installation cost	More
10	Heat transfer / boiling coefficient 1	Normal
11	Lead time & handling	More
12	Revamping Capacity & Energy efficiency	1 Normal
13	Temperature constraints	Yes
14	Overall Thermal Performance	1 X

Proposed Configuration - Enhanced Tubes

1525mm ID x 6000mm Tube Length **3106 Nos (Enhanced Tubes)** 18,872,000 Watts **1 No** Less Less 60% of cost 50% of cost Less **Enhanced / High Boiling** Less Improved **Eliminated**

2X to 5X

How Precision Equipments can help you Implement cost savings through enhanced heat transfer tubes

• Your requests/opportunities would be divided into one of the following 3 categories :

Category A: Immediate Implementation 0

- Short term for immediate implementation.
- Similar applications are working in the field.
- No development work. Known design methods would suffice for this approach.
- The steps are: Design, Economic Analysis and commercialization. We should see results within 6 months to a year.

Category B: Medium term Implementation 0

- Medium term for implementation in 2 to 3 years.
- Would Require field tests
- Would not require any laboratory scale work.

Category C: Long term for Implementation 0

- In 5 years these opportunities would require some fundamental studies such as determining the boiling or condensatio heat transfer coefficient. This will be followed by prototype tests and beta tests before full commercialisation
- PECPL is willing to work with interested customers to provide the best solutions that would meet the comprehensive needs of customers world-wide.

- 0 +1 (716) 208-4420
- +91 44 4710 0603

lin

B-70/1, SIPCOT Industrial Park, Chennai – 602105, India

www.pecpl.com

linkedin.com/company/precision-equipments

